붙임2 Rea	search Outcomes Report
Research Outcomes	Harnessing Large Language Models to Collect and Analyze Metal–Organic Framework Property Data Set
Performance Objectives	Published in a Top 10% JCR Journal
Type of Performance	Research Article(Paper)PatentsResearcher ExchangeResearcher EngagementInformation ExchangeOthers
Description of Performance Type	Published in Journal of the American Chemical Society (JCR top 7.8%)
Research Institutes	Korea Advanced Institute of Science and Technology (KAIST) / Prof. Jihan Kim / Taeun Bae et al. (5 others)
Attachments (Image, Photograph, Ect.)	a) Data Extraction Agent (b) Table data Table data (c) Synthesis Conditions Texts Characteristic properties Coverview of the Data Mining Process Using Large Language Models>
Achievement Date	2025.01.21
Summary of Performance	 Developed a tool that utilizes large language models (LLMs) to mine data from tables and text in metal-organic framework (MOF) literature. Structured the extracted information into a database. Published in <i>Journal of the American Chemical Society</i> (JCR top 7.8%).
Description of Performance	 Key Features Data mining powered by large language models. Performance Achieves over 90% accuracy across all three stages of data extraction. Capable of processing approximately 40,000 papers in a single batch. Excellence of the Results Outperforms existing data mining tools in accuracy. Applicable to a wide range of papers with diverse formats. Uniqueness of the Results Unlike conventional methods that require retraining as the number of papers increases, this approach applies to new papers without additional training. While initially developed for MOF literature, the method is easily adaptable to other scientific fields using large language models.